ROMTEKNOLOGI Nyttelaster for jordobservasjon

G.Stette@tele.ntnu.no

System for jordobservasjon

Oversikt

- Systemer for jordobservasjon
- Vinduer i atmosfæren
 - Mikrobølger
 - Optisk observasjon
- Radar med syntetisk aperture (SAR)
- Interferometri
- Optisk deteksjon
 - Grunnleggende begrensninger
 - GOME
- Meteorologiske satellitter

Oversikt over instrumenter

Vinduer i atmosfæren

Slide 5

OPPLØSNING

Oppløsningen er bestemt av aperturdiameter og bølgelengde.

Utforming av kamera i satellitt.

Bruk av lys (optisk) og radiobølger (radar)

Slide 8

Hvordan lage radarbilder med høy oppløsning?

Langs banen

Utsendte pulser og mottatte reflekser registreres nøyaktig med amplitude, fase og posisjoner. Dermed blir radarbildet "som om satellitten er tilstede samtidig over den aktuelle banedelen". Dette gir en stor "syntetisk aperture".

Syntetisk aperture

Langs banen

Utsendte pulser og mottatte reflekser registreres nøyaktig med amplitude, fase og posisjoner. Dermed blir radarbildet "som om satellitten er tilstede samtidig over den aktuelle banedelen". Dette gir en stor "syntetisk aperture".

Syntetisk aperture

Slide 11

Prinsippliell virkemåte SAR

Endevour med stereoradar

Måling med SAR

Eksempel på bilde

Lineær scanning

Lineær detektor

Whisk Broom Scanner

"Stop and stare"

Detektorer

Silisiumdetektorer med en kombinasjon av lysfølsomme detektorer og elektronikk

Lineære array med 6000 til 12000 pixel.

Dynamikkområde 10000 (40 dB)

Utlesingshastighet 10 Ms/s

Romkvalifisert utstyr

DNTNU

Lysfølsomme elementer overfører fotoner (lys) til elektroner (elektriske ladninger)

- Opp til 1024 x 1024 i rammeoverføringsmodus (space qualified)
- Godt dynamikkområde (5000)
- Dårlig fyllfaktor (25%) pga elektronikk per pixel
- Begrenset rammehastighet (60 Hz)

(CCD-elementet i et kamera med oppløsning på 1,3 megapixel har typisk dimensjon på 4.4 mm x 6,6 mm.)

Arbeidsprinsipp (MOMS 1)

Kameraretninger for MOMS 2P.

Tre kameraer er rettet mot bakken rett under satellitten. To av dem, MS 1/2 og MS 3/4, dekker samme området med samme oppløsning og gir avbildning i alle de fire båndene. Oppløsning og bredde er som for Stereo 6 og 7. Et tredje kamera, HR5, som dekker bølgelengdeområdet 512 til 765 nm, merket pankromatisk, avbilder bakken rett under satellitten med en pixeldimensjon på 4,5 x 4,5 meter langs satellittbanen. Stereobilder blir skapt ved at samme område på bakken avbildes fra to ulike posisjoner. Etter 20 sekund dekker bakre kamera Stereo 7 det området som forreste kamera Stereo 6 dekket for 20 sekunder siden..

Stereoavbildning

Kanaler for forskjellig farge

Channel	Mode	Orientation	Band Width	Ground Pixel
1	M/S	Nadir	449 - 511 nm	18 x 18m
2	M/S	Nadir	532 - 576 nm	18 x 18m
3	M/S	Nadir	645 - 677 nm	18 x 18m
4	M/S	Nadir	772 - 815 nm	18 x 18m
5	HR	Nadir	512 - 765 nm	6 x 6 m
6	Stereo	+21.4°	524 - 763 nm	18 x 18m
7	Stereo	-21.4°	524 - 763 nm	18 x 18m

Det første bildet med MOMS 2

Installiter

Prinsipp for Meteosat

ONTNU

Meteosat-systemet

Romteknologi 2004 Slide 29

ONTNU

Værkart

Radiometri

Mikrobolgeradiometri

Radiometri er utstråling av elektromagnetisk energi, mens fotometri omfatter den utstråling som oppfattes av det menneskelige øye.

Atmosfærisk vindu, mikrobølger

Utstråling

Mikrobølgeradiometri først utviklet for studiet av signalkilder i rommet

- 1962: Mariner 2, studier av Venus
- 1972: Nimbus-3, studier av atmosfæren på jorda, Electrically-Scanned Microwave radiometer (ESMR) Måling av bl.a. regnintensitet, snø, is
- Et svart legeme er et ideelt materiale som absorberer all innfallende stråling. En perfekt absorbent er også perfekt når det gjelder utstråling.

Plancks lov:

$$B_f = \frac{2hf^3}{c^2} \left(\frac{1}{e^{hf/kT} - 1}\right)$$

- B_f= spektral intensitet, i Watt/m²/sr/Hz hvor sr er romvinkel i steradianer
- h = Plancks konstant, 6,63 x 10⁻²³ Watt/K/Hz
- f = frekvens
- k = Bolzmanns konstant, 1,38 x 10⁻²³ Watt/K/Hz
- T = absolutt temperatur
- c = lyshastigheten, 300 000 km/s

Plancks strålingslov

Total intensitet over hele spektret:

Stephan-Bolzmanns lov:

$$B = \frac{\sigma T^4}{\pi}$$
 Watt/m² / sr

Wiens forskyvningslov (ved derivasjon av Plancks lov):

Hva ser vi?

Hvitt lys som treffer et legeme vil delvis bli absorbert og delvis reflektert. Spektret for det reflekterte signalet bestemmer det vi oppfatter som **farge**.

Grønt gress absorberer alle fargene unntatt grønt. Brune blad absorberer alle fargene unntatt brunt. Absorpsjonsspektret kan brukes til å karakterisere materialet.

Detaljerte analyser kan gi informasjon om tilstanden for vegetasjon, hva som vokser, innholdet av fuktighet, soppangrep og lignende.

- Gjenstander kan også stråle ut elektromagnetiske bølger, avhengig av temperatur, for eksempel glødende metall.
- Sola som har en temperatur på 6000 K sender ut solskinn.
- Jorda, som har en temperatur på ca 300 K sender ut "jordskinn".
- Alle som har en temperatur over 0 K, også du, sender ut elektromagnetisk stråling.
- Bølgelengden er bestemt av temperaturen.

Wiens lov

Wiens lov: Bølgelengden for maksimal spektral utstråling, λ_{max} , fra et svart legeme er bare gitt av den absolutte temperaturen, T.

$$\lambda_{\max} = \frac{2898}{T} \mu m$$

Denne loven kan vi bruke for å bestemme frekvensen for mottakeren (detektoren) som skal observere bestemte fenomener.

Figuren viser effektspektret for sollys.

Maksimum ligger på λ = 0.483 μ m.

Hva er temperaturen på sola?

 $T = \frac{2898}{0.483} = 6000$ K, eller 5700 C

Effektutstråling

Stefan-Bolzmanns lov sier at den energien so stråles ut fra et legene er bestemt av materialegenskapene for legemet og av temperaturen.

$$E = \varepsilon \cdot \sigma \cdot T^4$$

- E = utstrålt effekt i Watt per kvadratmeter
- ϵ = emisjonskoeffisienten for legemet
- σ = Stefan-Bolzmanns konstant, 5,67 · 10⁻⁸ Watt/m²/K⁴

Strålingslover (forts)

Wiens strålingslov, gjelder for korte bølgelengder:

$$B_f = \frac{2hf^3}{c^2} \cdot e^{-hf/kT}$$

Rayleigh-Jeans strålingslov, gjelder for lave frekvenser:

Effekt P mottatt av en mottaker med båndbredde B Hz er gitt av :

$$B_f = \frac{2\pi i}{\lambda^2}$$

 $P = kT_A B$

2kT

Den radiometriske antennetemperaturen, TA er definert ved

$$T_{A} = \frac{\iint_{4\pi} T_{AP}(\theta, \phi) F_{n}(\theta, \varphi) \cdot d\Omega}{\iint_{4\pi} F_{n}(\theta, \varphi) \cdot d\Omega}$$

Radiometri

Radiometriske instrumenter

Utgangsspenninga fra detektoren er proporsjonal $G(T_A + T_N)$

Følsomheten er gitt av

$$\Delta T = \frac{T_A + T_N}{\sqrt{B\tau}}$$

Ulempe: Variasjon av forsterkning G og støytemperatur T_N gir feil verdi for T_A .

Romteknologi 2004 Slide 40

ONTNU

Dicke-radiometer

Inngangen er vekselvis knyttet til antenna med temperatur T_A og til en referanse med støytemperatur T_B .

Tilkoblet antenne: $V_{ut} = c (T_A + T_N) G$ Tilkoblet referanse: $V_{ut} = -c (T_A + T_R) G$ Ved rask veksling, typisk 1 kHz: $V_{ut} = V_1 + V_2$ $= c(T_A + T_N) G - c(T_A + T_R) G$ $= c(T_A - T_R) G$

Støytemperaturen for radiometeret er nå eliminert. Følsomheten er redusert pga redusert integrasjonstid

Radiometer i amerikansk met. satellitt

Frequency	19.35 Ghz +/- 50 MHz	22.235 Ghz +/- 50 MHz	37.0 Ghz +/- 100 MHz	85.5 Ghz +/- 300 MHz
Polarization	H et V	V	H et V	H et V
Δ Tmin	0.8 K	0.8 K	0.6 K	1.1 K
Integration time	7.95 ms	7.95 ms	7.95 ms	3.89 ms
Radiometric precision	1.5 K	1.5 K	1.5 K	1.5 K
Spatial resolution (km)	70x45	60x40	38x30	16x14

Radiometer scanning

Måling av snødybde med DMSP SSSM/I

Radar høydemåler

Meters

Satellitt høydemåler

Hvorfor er vi interessert i høydemåling?

WGS-84 Geoid Height

- 70.00

Oppløsning i tid og frekvens

Slide 47

ONTNU

Bruk av kodet signal

Slide 48

Høydemåler

For å oppnå tilstrekkelig oppløsning på bakken må en satellittantenne ha store dimensjoner. For 1 km oppløsning fra 800 km høyde må åpningsvinkelen være ca 0,07 grader og det krever en aperturdimensjonen på 800 bølgelengder.

Et alternativ er å bruke en kort puls, og så bruke den første delen av refleksen. Dette betegnes pulsbegrensning, og ble benyttet på en første europeiske jordressurssatellitten ERS1.

Kort puls gir dårlig signal/støyforhold. Dette kan forbedres ved puls kompresjon.

Romteknologi 2004 Slide 49

ONTNU

Bruk av chirpsignal og dispersivt filter

Akustisk overflatebølgefilter

Elektriske signaler gjøres om til akustiske, og de forskjellige frekvenskomponentene går forskjellig veilengde i filteret.

Dette gir pulskompresjon, dechirping.

Radar høydemåler

Topex Poseidon

Banehøyde 1336 km. Målenøyaktighet 4 – 5 cm. Hastighet 7 km/s Repetisjonsperiod 10 dager Høydemålere ved 13,6 og 5,3 GHz CNES 13,65 GHz

ONTNU

TOPEX, 3. april 2005

Slide 55

POLARISASJON

- Lineær polarisasjon
 - Retning
- Sirkulær pol.
 - Rotasjonsretning
- Elliptisk polarisasjon
 - Retning
 - Aksialforhold
 (A/B)
 - Helningsvinkel, θ,

Doplerforskyvning

Når veilengden for signalet avtar, øker mottatt frekvens med veilengdereduksjon per sekund målt i bølgelegder.

Med en frekvens på 10 GHz (10000 MHz) er bølgelengden 0,03 meter. Hvis avstand sender (via mål) til mottaker avtar med 3 km per sekund vil frekvensen for mottatt signal ligge 3000/0,03 = 100 000 Hz = 100 kHz

Økende bølgehøyde gir økt spredning i tid av det reflekterte signalet.

Deteksjon av bølger, Bragg-resonans

Resonans når

 $2\lambda_H \cdot \sin \theta = n \cdot \lambda_R$

Hvis vi kunne regulere bølgelengden kunne vi måle bølgelengden for bølgene på havoverflata..

SEASAT A Satellite Scatterometer (SASS)

Tilbakespredingen varierer med retningen for bølgene (asimut) (Målt med 45 grader innfallsvinkel)

For å kunne bestemme bølgeretning må det derfor foretas flere målinger.

Seasat-A Satellite Scatterometer System

Frekvens14,6 GHzAntall stråler:4Ståleretninger:45 graderAsimut strålebredde:0,5 graderElevasjon strålebredde 25 grader(Dekningsområde nadir:140 km)Polarisasjonsretninger:H og VTid mellom målingeri forskjellige retninger:1 – 3 min

Oppløsning i Dopplerskift og avstand

DNTNU

ENVISAT

ENVISAT

MWR

(MicroWave Radiometer) The main objective of the MicroWave Radiometer (MWR) is the measurement of the integrated atmospheric water vapour column and cloud liquid water content, as correction terms for the radar altimeter signal.

In addition, MWR measurement data are useful for the determination of surface emissivity and soil moisture over land, for surface energy budget investigations to support atmospheric studies, and for ice characterization.

http://envisat.esa.int/instruments/tour-index/

Prinsippet for GOMOS

Global Ozone Monitoring by Occultation of Stars

Oppgaver for GOMOS

- Measurement of profiles of ozone, NO₂, NO₃, OCIO, temperature, and water vapor;
- Day- and night-side measurement capability;
- Global coverage with typically over 600 profile measurements per day;
- Altitude measurement capability between the tropopause and 100 km;
- Altitude resolution of better than 1.7 km.

Interferometri

SAR-bilde av Nord-Tyrkia

Interferogram av Nord-Tyrkia

Vulkanen Etna

